skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "claffy, k"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 27, 2026
  2. Free, publicly-accessible full text available March 7, 2026
  3. We investigate a novel approach to the use of jitter to infer network congestion using data collected by probes in access networks. We discovered a set of features in jitter and jitter dispersion —a jitter-derived time series we define in this paper—time series that are characteristic of periods of congestion. We leverage these concepts to create a jitter-based congestion inference framework that we call Jitterbug. We apply Jitterbug’s capabilities to a wide range of traffic scenarios and discover that Jitterbug can correctly identify both recurrent and one-off congestion events. We validate Jitterbug inferences against state-of-the-art autocorrelation-based inferences of recurrent congestion. We find that the two approaches have strong congruity in their inferences, but Jitterbug holds promise for detecting one-off as well as recurrent congestion. We identify several future directions for this research including leveraging ML/AI techniques to optimize performance and accuracy of this approach in operational settings. 
    more » « less